Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter 28 The Plane exercise very short answer type question 24 maths

Answers (1)

Answer:

cos^{-1}\frac{11}{21}

Hint:

 cos\theta =\frac{\left | \overrightarrow{n_1}\overrightarrow{n_2} \right |}{\left | \overrightarrow{n_1} \right |.\left | \overrightarrow{n_2} \right |}

Given:

 \overrightarrow{r}.(\widehat{i}-2\widehat{j}-2\widehat{k})=1 \text { and }\overrightarrow{r}.(3\widehat{i}-6\widehat{j}+2\widehat{k})=0

Solution:

\overrightarrow{r}.(\widehat{i}-2\widehat{j}-2\widehat{k})=1 \qquad \qquad \dots(i)

So the vector, normal to the plane is

\overrightarrow{n_1}=(\widehat{i}-2\widehat{j}-2\widehat{k})

\overrightarrow{r}.(3\widehat{i}-6\widehat{j}+2\widehat{k})=0 \qquad \qquad \dots (ii)

So the vector, normal to the plane is

\overrightarrow{n_2}=(3\widehat{i}-6\widehat{j}+2\widehat{k})

Angle between (i) & (ii)

\begin{aligned} &\Rightarrow cos\theta =\frac{\left | \overrightarrow{n_1}\overrightarrow{n_2} \right |}{\left | \overrightarrow{n_1} \right |.\left | \overrightarrow{n_2} \right |}\\ &\Rightarrow cos\theta = \frac{\left | (\widehat{i}-2\widehat{j}-2\widehat{k}).(3\widehat{i}-6\widehat{j}+2\widehat{k}) \right |}{\left | (\widehat{i}-2\widehat{j}-2\widehat{k}) \right |\left | (3\widehat{i}-6\widehat{j}+2\widehat{k}) \right |}\\ &\Rightarrow cos\theta =\frac{3+12-4}{\sqrt{1+4+4}.\sqrt{9+36+4}}\\ &\Rightarrow cos\theta =\frac{11}{3\times 7}\\ &\Rightarrow cos\theta =\frac{11}{21}\\ &\Rightarrow \theta =cos^{-1}\frac{11}{21} \end{aligned}

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads