Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Differentials Errors and Approximations exercise 13.1 question 9 sub question (vii) maths

Answers (1)

Answer: 0.2495

Hint:  Here, we use the formula

            \Delta y=f(x+\Delta x)-f(x)

Given:  \frac{1}{(2.002)^{2}}

Solution: 

consider     y=\frac{1}{x^{2}}

Here     x=2 \text { and } \Delta x=0.002

On differentiating wrt x,

    \frac{d y}{d x}=\frac{-2}{x^{3}}

So we get,

    \Delta y=\frac{d y}{d x} \cdot \Delta x

On substituting the value we get,

    \Delta \mathrm{y}=\frac{-2}{8}(0.002)

On further calculating we get,

    \Delta \mathrm{y}=\frac{-0.5}{1000}=-0.0005

On substitution we get,

    -0.005=\frac{1}{(2.002)^{2}}-\frac{1}{4}

We get

    \frac{1}{(2.002)^{2}}=0.2495

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads