Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Maxima and Minima exercise Multiple choice question, question 22 maths

Answers (1)

Answer: option(a) \frac{4}{3}

Hint: For local maxima or minima, we must have f'(x)=0.

Given: f(x)=\frac{1}{4x^2+2x+1}

Solution:

We have,

Maximum Value of \frac{1}{4x^2+2x+1} = Minimum Value of 4x^2+2x+1

f(x)=4x^2+2x+1               

\Rightarrow f'(x) =8x+2           

For maxima and minima f'(x)=0

\Rightarrow 8x+2=0

\Rightarrow x=\frac{-2}{8}

\Rightarrow x=\frac{-1}{4}

Now,

f''(x)=8

f''(1)=8>0

So,x=\frac{-1}{4} is a local minima.

Thus, \frac{1}{4x^2+2x+1} is maximum at x=\frac{-1}{4}

Maximum Value of 

\frac{1}{4 x^{2}+2 x+1}=\frac{1}{4\left(\frac{-1}{4}\right)^{2}+2\left(\frac{-1}{4}\right)+1}=\frac{1}{4\left(\frac{1}{16}\right)+2\left(\frac{-1}{4}\right)+1}=\frac{1}{\frac{1}{4}+\frac{-1}{2}+1}=\frac{1}{\frac{-1}{4}+1}=\frac{1}{\frac{3}{4}}=\frac{4}{3}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads