Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Maxima and Minima exercise Multiple choice question, question 23 maths

Answers (1)

Answer: option (b) 2

Hint: For local maxima or minima, we must have f'(x)=0.

Given: f(x)=x+\frac{1}{x}

Solution:

We have,

xy =1

\Rightarrow y=\frac{1}{x}

f(x)=x+\frac{1}{x}

f'(x)=1-\frac{1}{x^2}                   

For maxima and minima f'(x)=0

\Rightarrow 1-\frac{1}{x^2}=0

\Rightarrow x^2-1=0

\Rightarrow x^2=1

\Rightarrow x=1

\Rightarrow \frac{1}{y}=1

\Rightarrow y=1

Now,

f''(x)=\frac{2}{x^3}

f''(1)=\frac{2}{1^3}=2>0

So, x = 1 is a local minima.

Minimum Value of f(1)=1+\frac{1}{1}=1+1=2

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads