Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 28 The Plane  Exercise 28.13 Question 13 Maths Textbook Solution.

Answers (1)

Answerx-y+z-1=0

Hint: first find the value of coordinates, a, b and c

Given: (3, 2, 0) and contain the line \frac{x-3}{1}=\frac{y-b}{5}=\frac{z-4}{7}

Solution: given that a plane is passes through the point (3, 2, 0) so equation will be;

              \begin{aligned} &a(x-3)+b(y-2)+c(z-0)=0 \\ \end{aligned}   -----(i)

                \begin{aligned} &a(x-3)+b(y-2)+c z=0 \end{aligned} --------------(ii)

Plane also contains the line

                \frac{x-3}{1}=\frac{y-b}{5}=\frac{z-4}{7}

So it passes through the point (3, 2, 10)

         \begin{aligned} &a(3-3)+b(6-2)+c(4-0)=0 \\ &b+4 c=0 \\ \end{aligned}        ------------------(2)

Also plane will be parallel to

           \begin{aligned} &a(1)+b(5)+c(4)=0 \\ &a+5 b+4 c=0------(3) \\ \end{aligned}

Solving (2) and (3) by cross multiplication,

                 \begin{aligned} &\frac{a}{16-20}=\frac{b}{4-0}=\frac{c}{0-4}=k \\ &\frac{a}{4}=\frac{b}{4}=-\frac{c}{4}=k \\ &a=-k, b=k, c=-k \\ \end{aligned}

Put a=-k,b=k,c=-kin equation (ii) we get

                 \begin{aligned} &(-k)(x-3)+(k)(y-2)+(-k)=0 \\ &-2+3+y-2-z=0 \\ &x-y+z-1=0 \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads