Get Answers to all your Questions

header-bg qa

Need solution for RD sharma maths class 12 chapter 24 vector or cross product Exercise Multiple choice questions question 19 maths textbook solution

Answers (1)

Answer: \frac{1}{2}\sqrt{229}

Given: The vectors from origin O to the points A and B are \overrightarrow{a}=2\hat{i}-3\hat{j}+2\hat{k};\overrightarrow{b}=2\hat{i}+3\hat{j}+\hat{k}respectively.

Hint: Area of                                                                    

Explanation: Here \overrightarrow{a}=2\hat{i}-3\hat{j}+2\hat{k};\overrightarrow{b}=2\hat{i}+3\hat{j}+\hat{k}

              \overrightarrow{O A}=( P. V of A- P.V of O)

             =(2 \hat{i}-3 \hat{j}+2 \hat{k})-(0 \hat{i}+0 \hat{j}+0 \hat{k})

              =2 \hat{i}-3 \hat{j}+2 \hat{k}

              \overrightarrow{A B}=(P . V \text { of } B-P . V \text { of } A) \\

              =(2 \hat{i}+3 \hat{j}+\hat{k})-(2 \hat{i}-3 \hat{j}+2 \hat{k}) \\

              =0 \hat{i}+6 \hat{j}-\hat{k}

              Area of \triangle O A B=\frac{1}{2}|\overrightarrow{O A} \times \overrightarrow{A B}|

              \begin{aligned} &\text { Now, }(\overrightarrow{O A} \times \overrightarrow{A B})=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -2 \\ 0 & 6 & -1 \end{array}\right| \\ \end{aligned}

                                                                         = \hat{i}(3-12)-\hat{j}(-2-0)+\hat{k}(12+0) \\

                                                                         =-9 \hat{i}+2 \hat{j}+12 \hat{k} \\

             \Rightarrow|\overrightarrow{O A} \times \overrightarrow{A B}|=\sqrt{(-9)^{2}+(2)^{2}+(12)^{2}}=\sqrt{81+4+144}=\sqrt{229}

              Area of \triangle O A B=\frac{1}{2}\sqrt{229}

Posted by

Infoexpert

View full answer