Get Answers to all your Questions

header-bg qa

Need solution for rd sharma maths class 12 chapter 24 vector or cross product Exercises Multiple choice questions question 6 maths textbook solution

Answers (1)

xx    Answer: 300

Given: Vector \overrightarrow{a} & \overrightarrow{b}are inclined at angle\theta =120^{\circ}. If \left | \overrightarrow{a} \right |=1 , \left | \overrightarrow{b} \right |=2then \left | \left ( \overrightarrow{a}+3\overrightarrow{b} \right )\times \left ( 3\overrightarrow{a}-\overrightarrow{b} \right ) \right |is equal to

Hint: You must know about cross product.

 

Explanation:

              \begin{aligned} |\vec{a}|=1,|\vec{b}|=2, \theta=120^{\circ} \\ \end{aligned}

             \qquad|(\vec{a}+3 \vec{b}) \times(3 \vec{a}-\vec{b})|^{2}=|3(\vec{a} \times \vec{a})-(\vec{a} \times \vec{b})+9(\vec{b} \times \vec{a})-3(\vec{b} \times \vec{b})|^{2} \\

        =|3(0)+(\vec{b} \times \vec{a})+9(\vec{b} \times \vec{a})-3(0)|^{2} \quad[\because(\vec{a} \times \vec{a})=0 \text { and }(\vec{b} \times \vec{b})=0] \\

         =|10(\vec{b} \times \vec{a})|^{2} \\

        =|\vec{b} \times \vec{a}|=|\vec{b}| \vec{a} \mid \sin \theta  

             Substitute,

 \begin{aligned} |\vec{a}|=1,|\vec{b}|=2, \theta=120^{\circ} \\ \end{aligned}                                                                          

{l} =|\vec{b}||\vec{a}| \sin 120^{\circ}                                                         \left[\begin{array}{l} \because \sin 120^{\circ}=\sin \left(180^{\circ}-60^{\circ}\right) \\ =\sin 60^{\circ}=\frac{\sqrt{3}}{2} \end{array}\right]

\\ =(2)(1)\left(\frac{\sqrt{3}}{2}\right) \\ =\sqrt{3}     

\qquad|(\vec{a}+3 \vec{b}) \times(3 \vec{a}-\vec{b})|^{2}=\left | 10\left ( \sqrt{3} \right ) \right |^{2}=300

Posted by

Infoexpert

View full answer