Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 25 Scalar Triple Product Exercise Very Short Answer Question, question 9.

Answers (1)

Answer:

10

Hint:

Use scalar triple product formula.

Given:

\left[\begin{array}{llll} 3 \vec{a}+7 \vec{b} & \vec{c} & \vec{d} \end{array}\right]=\lambda\left[\begin{array}{llll} \vec{a} & \vec{c} & \vec{d} \end{array}\right]+\mu\left[\begin{array}{lll} \vec{b} & \vec{c} & \vec{d} \end{array}\right]

Solution:

\left[\begin{array}{llll} 3 \vec{a}+7 \vec{b} & \vec{c} & \vec{d} \end{array}\right]=\lambda\left[\begin{array}{llll} \vec{a} & \vec{c} & \vec{d} \end{array}\right]+\mu\left[\begin{array}{lll} \vec{b} & \vec{c} & \vec{d} \end{array}\right]

L.H.S

\begin{array}{ll} =[3 \vec{a}+7 \vec{b} \quad \vec{c} \quad \vec{d}] \\ =\{(3 \vec{a}+7 \vec{b}) \times \vec{c}\} \cdot \vec{d} &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; {[\because[\vec{a} \quad \vec{b} \quad \vec{c}]=\vec{a} \times \vec{b} \cdot \vec{c}=\vec{a} \cdot(\vec{b} \times \vec{c})]} \\ =\{3(\vec{a} \times \vec{c})+7(\vec{b} \times \vec{c})\} \cdot \vec{d} & \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; {[\text { By distributive property }]} \end{array}

\begin{aligned} &=3\{(\vec{a} \times \vec{c}) \cdot \vec{d}\}+7\{(\vec{b} \times \vec{c}) \cdot \vec{d}\} \\ &=3\left[\begin{array}{llll} \vec{a} & \vec{c} & \vec{d} \end{array}\right]+7[\vec{b} \quad \vec{c} \quad \vec{d}] \end{aligned} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\because(\vec{a} \times \vec{b}) \cdot \vec{c}=\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{c} \end{array}\right]\right.

  Since, L.H.S = R.H.S

i.e.\left[\begin{array}{llll} 3 \vec{a}+7 \vec{b} & \vec{c} & \vec{d} \end{array}\right]=\lambda\left[\begin{array}{llll} \vec{a} & \vec{c} & \vec{d} \end{array}\right]+\mu\left[\begin{array}{lll} \vec{b} & \vec{c} & \vec{d} \end{array}\right]

Comparing and equating co efficient from both sides.

We get,

\begin{aligned} &\lambda=3 \text { and } \mu=7 \\ &\therefore \lambda+\mu=3+7=10 \end{aligned}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads