Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 28 The Plane Excercise 28.11 Question 7

Answers (1)

Answer:  7 y+4 z-5=0

Hint: Use formula  a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0

Given:  (2,3,-4) \&(1,-1,3)

Solution: We know that the equation of plane passing through \left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)  is given by

            a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0                             ……………….. (1)

So, equation of plane passing through (2,3,-4) is

            a(x-2)+b(y-3)+c(z+4)=0                                 …………….…… (2)

It also passes through (1,-1,3)

            \Rightarrow-a-4 b+7 c=0 \\

            a(1-2)+b(-1-3)+c(3+4)=0 \\

            \begin{aligned} & &\Rightarrow a+4 b-7 c=0 \end{aligned}                                                        ……………….... (3)

We know that line

            \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}  is parallel to plane  a_{2} x+b_{2} y+c_{2} z+d_{2}=0

            if  a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0                                                ………………….. (4)

Here equation (2) is parallel to x- axis

            \frac{x}{1}=\frac{y}{0}=\frac{x}{0}                                                                    …………………… (5)

Using (2) and (5) in equation (4) we get

            \begin{aligned} &a \times 1+b \times 0+c \times 0=0 \\ &\Rightarrow a=0 \end{aligned}

Putting the value of ‘a’ in equation (3) we get

            \begin{aligned} &\Rightarrow a-4 b+7 c=0 \\ & \end{aligned}

            \Rightarrow 0-4 b+7 c=0 \\

            \Rightarrow-4 b=-7 c \\

            \Rightarrow b=\frac{7 c}{4}

Now, putting the value of a and b in (2) we get

            \begin{aligned} &a(x-2)+b(y-3)+c(z+4)=0 \\ & \end{aligned}

            \Rightarrow 0(x-2)+\frac{7 c}{4}(y-3)+c(z+4)=0

            \begin{aligned} &\Rightarrow 0+\frac{7 c y}{4}-\frac{21 c}{4}+c z+4 c=0 \\ & \end{aligned}

            \Rightarrow 7 c y-21 c+4 c z+16 c=0

Dividing by c we have

            \begin{aligned} &7 y-21+4 z+16=0 \\ & \end{aligned}

            \Rightarrow 7 y+4 z-5=0

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads