Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter 28 The Plane exercise multiple choice question 15

Answers (1)

Answer:

 Option (a)

Hint:

 Use straight line & vector cross product.

Given:

 x - 1 = 2y - 5 = 2z and 3x = 4y -11 = 3z - 4

Solution:

The required plane is parallel to the lines

  x - 1 = 2y - 5 = 2z and 3x = 4y - 11 = 3z - 4

Equation of the lines can be written as,

\frac{x-1}{1}=\frac{2y-5}{1}=\frac{2z}{1}

or

\frac{x-1}{1}=\frac{y-\frac{5}{2}}{\frac{1}{2}}=\frac{z}{\frac{1}{2}}

and,

\frac{3x}{1}=\frac{4y-11}{1}=\frac{3z-4}{1}

or,

\frac{x}{\frac{1}{3}}=\frac{y-\frac{11}{4}}{\frac{1}{4}}=\frac{z-\frac{4}{3}}{\frac{1}{3}}=\mu , \text { Let }

So, we know the straight lines as

\begin{aligned} &(1+\lambda )\widehat{i}+\left ( \frac{5}{2}+\frac{1}{2}\lambda \right )\widehat{j}+\frac{1}{2}\widehat{k}=0 \text { or, }\\ &\widehat{i}+\frac{5}{2}\widehat{j}+\lambda \left ( \widehat{i}+\frac{1}{2}\widehat{j}+\frac{1}{2}\widehat{k} \right )=0 \end{aligned}

And,

\begin{aligned} &\frac{1}{3}\mu \widehat{i}+\left ( \frac{11}{4}+\frac{1}{4}\mu \right )\widehat{j}+\left ( \frac{4}{3}+\frac{1}{3}\mu \right )\widehat{k}=0, \text { or }\\ &\frac{11}{4}\widehat{j}+\frac{4}{3}\widehat{k}+\mu \left ( \frac{1}{3}\widehat{i}+\frac{1}{4}\widehat{j}+\frac{1}{3}\widehat{k} \right )=0 \end{aligned}

We have the normal vector of the plane as,

\begin{aligned} &\overrightarrow{n}=\left (\widehat{i}+\frac{1}{2}\widehat{j}+\frac{1}{2}\widehat{k} \right )\times \left ( \frac{1}{3}\widehat{i}+\frac{1}{4}\widehat{j}+\frac{1}{3}\widehat{k} \right )\\ &=\begin{vmatrix} \widehat{i} &\widehat{j} &\widehat{k} \\ \\ 1 &\frac{1}{2} &\frac{1}{2} \\ \\ \frac{1}{3} &\frac{1}{4} &\frac{1}{3} \end{vmatrix}\\ &=\left ( \left ( \frac{1}{2}\times \frac{1}{3} \right )-\left ( \frac{1}{2}\times \frac{1}{4} \right ) \right )\widehat{i}-\left ( \left ( 1\times \frac{1}{3} \right )-\left ( \frac{1}{2}\times \frac{1}{3} \right ) \right )\widehat{j}+\left ( \left ( 1\times \frac{1}{4} \right )-\left (\frac{1}{2}\times \frac{1}{3} \right ) \right )\widehat{k}\\ &=\left ( \frac{1}{6}-\frac{1}{8} \right )\widehat{i}-\left ( \frac{1}{3}-\frac{1}{6} \right )\widehat{j}+\left ( \frac{1}{4}-\frac{1}{6} \right )\widehat{k}\\ &=\left (\frac{1}{24}\widehat{i}-\frac{1}{6}\widehat{j}+\frac{1}{12}\widehat{k} \right ) \end{aligned}

So, the equation of plane is

\begin{aligned} &(\overrightarrow{r}-\overrightarrow{a}).\overrightarrow{n}=0\\ &\text { Where } \overrightarrow{a}=2\widehat{i}+3\widehat{j}+3\widehat{k},\\ &\overrightarrow{r}.\overrightarrow{n}=\overrightarrow{a}.\overrightarrow{n}\\ &\left ( x\widehat{i}+y\widehat{j}+z\widehat{k} \right ).\overrightarrow{n}=(2\widehat{i}+3\widehat{j}+3\widehat{k}).\overrightarrow{n}\\ &\left ( x\widehat{i}+y\widehat{j}+z\widehat{k} \right ).\left ( \frac{1}{24}\widehat{i}-\frac{1}{6}\widehat{j}+\frac{1}{12}\widehat{k} \right )=(2\widehat{i}+3\widehat{j}+3\widehat{k}).\left ( \frac{1}{24}\widehat{i}-\frac{1}{6}\widehat{j}+\frac{1}{12}\widehat{k} \right ) \end{aligned}

x - 4y + 2z + 4 = 0, (by solving further)

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads