Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Areas of Bounded Region exercise 20.1 question 11

Answers (1)

Answer:

6\pi \; sq\cdot unit

Hint:

9 x^{2}+4 y^{2}=36

Given:

Sketch the region (x, y): 9 x^{2}+4 y^{2}=36 and find the area of region enclosed by using integration.

Solution:

We have,

9 x^{2}+4 y^{2}=36                                    .........(i)

\begin{aligned} &4 y^{2}=36-9 x^{2} \\\\ &y^{2}=\frac{9}{4}\left(4-x^{2}\right) \\\\ &y=\frac{3}{2} \sqrt{4-x^{2}} \end{aligned}                                    ...........(ii)

From (i), we get

\frac{x^{2}}{4}+\frac{y^{2}}{9}=1

Since \frac{x^{2}}{4}+\frac{y^{2}}{9}=1 all power of x and y are equal                 

\begin{aligned} &A=\text { Area of enclosed curve }=4 \int_{0}^{2}|y| d x \\\\ &A=4 \int_{0}^{2} \frac{3}{2} \sqrt{4-x^{2}} d x \\\\ &A=4 \times \frac{3}{2} \int_{0}^{2} \sqrt{4-x^{2}} d x \end{aligned}

\begin{aligned} &A=6 \int_{0}^{2} \sqrt{2^{2}-x^{2}} d x \\\\ &A=6\left[\frac{x}{2} \sqrt{2^{2}-x^{2}}+\frac{1}{2} 2^{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2} \\\\ &A=6\left[0+\frac{1}{2} 4 \sin ^{-1} 1\right] \end{aligned}

\begin{aligned} &A=6\left[\frac{1}{2} \times 4\left(\frac{\pi}{2}\right)\right] \\\\ &A=6 \pi \mathrm{sq} \cdot \text { unit } \\\\ &{\left[\because \int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c\right] \quad \text { and }\left[\because \int_{a}^{b} x^{n} d x=\left[\frac{x^{n+1}}{n+1}\right]_{a}^{b}\right]} \end{aligned}             

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads