Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Areas of Bounded Region exercise 20.1 question 15

Answers (1)

Answer:

\pi a^{2}\; s q \cdot \text { unit }

Hint:

Use definite integral

Given:

Using definite integral, find area of circle x^{2}+y^{2}=a^{2}

Solution:

x^{2}+y^{2}=a^{2}

Centre=\left ( 0,0 \right )

Radius=a

Hence,  OA=OB=Radius=a

               A=(a,0),B=(0,a)

Area of circle=4\times area of region OBAO

                   =4 \int_{0}^{a} y d x

We know that

                    \begin{aligned} &x^{2}+y^{2}=a^{2} \\\\ &y^{2}=a^{2}-x^{2} \\\\ &y=\pm \sqrt{a^{2}-x^{2}} \end{aligned}

Since  AOBA lies in first quadrant, value of y is positive

                    y=\sqrt{a^{2}-x^{2}}

Now,

Area of circle   =4 \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x \quad\left[\because \int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c\right]

                      \begin{aligned} &=4\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{0}^{a} \\\\ &=4\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{a}{a}\right]-\left[\frac{0}{2} \sqrt{a^{2}-0}+\frac{0^{2}}{2} \sin ^{-1} \frac{0}{a}\right] \end{aligned}

                      \begin{aligned} &=4\left[0+\frac{a^{2}}{2} \sin ^{-1} 1\right]_{0}^{a} \\\\ &=4 \times \frac{a^{2}}{2} \times \frac{\pi}{2} \\\\ &=\pi a^{2} \text { sq.units } \end{aligned}

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads