Get Answers to all your Questions

header-bg qa

need solution for RD Sharma maths class 12 chapter Differentiation exercise 10.2 question 27

Answers (1)

Answer: \cos x \sec ^{2}\left(e^{\sin x}\right) e^{\sin x}

Hint: You must know the rules of solving derivative of exponential and trigonometric function.

Given: \tan \left(e^{\sin x}\right)

Solution:

Let  y=\tan \left(e^{\sin x}\right)

Differentiate with respect to x

\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left[\tan \left(e^{\sin x}\right)\right] \\ &\frac{d y}{d x}=\sec ^{2}\left(e^{\sin x}\right) \frac{d}{d x}\left(e^{\sin x}\right) \end{aligned}

\begin{aligned} &\frac{d y}{d x}=\sec ^{2}\left(e^{\sin x}\right) \times e^{\sin x} \frac{d}{d x}(\sin x) \\ &\frac{d y}{d x}=\cos x \cdot \sec ^{2}\left(e^{\sin x}\right) \cdot e^{\sin x} \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads