Get Answers to all your Questions

header-bg qa

need solution for RD Sharma maths class 12 chapter Differentiation exercise 10.2 question 54

Answers (1)

Answer:  e^{a x} \sec x\left\{\mathrm{a} \tan 2 x+\tan x \tan 2 x+2 \sec ^{2} 2 x\right\}

Hint:  you must know the rule of solving derivative of exponential and trigonometric functions

Given: e^{a x} \sec x \tan 2 x

Solution:

Let  y=e^{a x} \sec x \tan 2 x

Differentiate with respect to x

\begin{aligned} &\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}} e^{a x} \sec x \tan 2 x \\\\ &\frac{\mathrm{dy}}{\mathrm{dx}}=e^{a x} \frac{d}{d x}\{\sec x \tan 2 x\}+\sec x \tan 2 x \frac{d}{d x}\left\{e^{a x}\right\} \end{aligned}

\begin{aligned} &\frac{\mathrm{dy}}{\mathrm{dx}}=e^{a x}\left[\sec x \tan x \tan 2 x+2 \sec ^{2} 2 x \sec x\right]+a e^{a x} \sec x \tan 2 x \\\\ &\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{a} e^{a x} \sec x \tan 2 x+e^{a x} \sec x \tan x \tan 2 x+2 \sec ^{2} 2 x \sec x e^{a x} \end{aligned}

\frac{\mathrm{dy}}{\mathrm{dx}}=e^{a x} \sec x\left\{\mathrm{a} \tan 2 x+\tan x \tan 2 x+2 \sec ^{2} 2 x\right\}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads