Get Answers to all your Questions

header-bg qa

 Need solution for RD Sharma maths class 12 chapter Diffrential Equation exercise 21.4 question 2

Answers (1)

Answer: y=e^{x}  is the solution of given function

Hint: Differentiate the function with respect to x

Given:

y=e^{x} is the function.

Solution:

Differentiate with respect to x

\begin{aligned} &\Rightarrow \frac{d y}{d x}=\frac{d e^{x}}{d x} \\ &\Rightarrow \frac{d y}{d x}=e^{x} \\ &\Rightarrow \frac{d y}{d x}=y\left[\because y=e^{x}\right] \end{aligned}

Thus, y\left(e^{x}\right) satisfies the equation.

Now , When

\begin{aligned} &x=0 \\ &y=e^{0}=1 \end{aligned}

Thus, \lambda(0)=1 also satisfies the given equation.

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads