Get Answers to all your Questions

header-bg qa

Need Solution for RD Sharma Maths Class 12 Chapter Maxima and Minima Exercise 17.2 Question 4

Answers (1)

Answer:

X= 0 and x= -2 is the point of local minima and local maxima respectively.

The value of the local maxima and local minima is 0 and -4 respectively.

Hint:

Use first derivative test to find the point and value of the local maxima and local minima.

Given:

f\left ( x \right )= \left ( x-1 \right )\left ( x+2 \right )^{2}

 Solution:

 f\left ( x \right )= \left ( x-1 \right )\left ( x+2 \right )^{2}

Differentiating f(x) with respect to ‘x’ then

\begin{aligned} &\frac{d}{d x}\{f(x)\}=\frac{d}{d x}\left\{(x-1)(x+2)^{2}\right\} \\ &=(x-1) \frac{d}{d x}(x+2)^{2}+(x+2)^{2} \frac{d}{d x}(x-1) \\ &=(x-1) \cdot 2(x+2)+(x+2)^{2} \\ &=(x+2)(2 x-2+x+2) \\ &=(x+2)(3 x) \end{aligned}

By first derivative test,for local maxima or local minima ,we have

\begin{aligned} &\frac{d}{d x}\{f(x)\}=\frac{d}{d x}\left\{(x-1)(x+2)^{2}\right\} \\ &=(x-1) \frac{d}{d x}(x+2)^{2}+(x+2)^{2} \frac{d}{d x}(x-1) \\ &=(x-1) \cdot 2(x+2)+(x+2)^{2} \\ &=(x+2)(2 x-2+x+2) \\ &=(x+2)(3 x) \end{aligned}

                                          +                          -                              +              

                                   -∞                    -2                      0                           ∞

Since, {f}'\left ( x \right ) changes from –ve to +ve when x increases through 0. So x=0 is the point of local minima.

The value of the local minima of f\left ( x \right ) at x=0is

 

Again, Since {f}'\left ( x \right ) changes from +ve to -ve when x increases through -2.

So, x=-2 is the point of local maxima.

The value of local maxima of f\left ( x \right ) at x=-2 is

 f\left ( -2 \right )=\left ( -2-1 \right )\left ( -2+2 \right )^{2}=-3\times 0=0

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads