Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Maxima and Minima exercise Multiple Choice question, question 15.

Answers (1)

Answer:  (1,2)

Hint: Using Distance Formula, calculate the value of variables.

Given:  y^2=2x

Solution:

Let the required point be (x,y) which is nearest to (2,1).

y^2=2x

\Rightarrow x=\frac{y^2}{4}            …(i)

Now,

d=\sqrt{(x-2)^2+(y-1)^2}

Squaring on both sides, we get

\begin{aligned} &d^{2}=(x-2)^{2}+(y-1)^{2} \\ &d^{2}=\left(\frac{y^{2}}{4}-2\right)^{2}+(y-1)^{2} \\ &d^{2}=\frac{y^{4}}{16}+4-y^{2}+y^{2}+1-2 y \end{aligned}

Now,

Z=d^2=\frac{y^2}{16}+5-2y

\frac{dZ}{dy}=\frac{y^3}{4}-2                                                         …(ii)          

For extrema\frac{dZ}{dy}=0

\Rightarrow \frac{y^3}{4}-2=0

\Rightarrow \frac{y^3}{4}=2

\Rightarrow y^3=8

\Rightarrow y=2

Substitute the value in Equation (i),

x=\frac{2^2}{4}=1

Now, differentiating (ii) w.r.t  y

\begin{aligned} &\frac{d^{2} Z}{d y^{2}}=\frac{3 y^{2}}{4} \\ &\frac{d^{2} Z}{d y^{2}}=\frac{3(2)^{2}}{4}=3>0 \end{aligned}

The nearest point is (1, 2).

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads