Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter The Plane exercise 28.15 question 11

Answers (1)

Answer:  (7,0,3)(-1,4,-1), \sqrt{6}

Hint:

\hat{N} \quad(3,2,1)

                                                    

If M is lying on the plane and the normal vector as well \hat{N}

(a x+b y+c z+d), \hat{N}=\frac{(a)}{\sqrt{a^{2}+b^{2}+i^{2}}} \hat{\imath}+\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}} \hat{\jmath}+\frac{c}{\sqrt{a^{2}+b^{2}} t^{2}} \hat{k}

Given:

Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point P(3,2,1) from the plane 2x-y+z+1=0. Find also the image of the point in the plane

Solution:

\begin{aligned} &\hat{N}=\frac{2}{\sqrt{6}} \hat{\imath}-\frac{\hat{\jmath}}{\sqrt{6}}+\frac{\hat{k}}{\sqrt{6}}\\ &\hat{N} \end{aligned}

                                                    

\begin{aligned} &\therefore \frac{x-3}{\frac{2}{\sqrt{6}}}=\frac{y-2}{\left(-\frac{1}{\sqrt{6}}\right)}=\frac{3-1}{\left(\frac{1}{\sqrt{6}}\right)}=\lambda \\\\ &x=\frac{3+2 \lambda}{\sqrt{6}}, y=\frac{2-\lambda}{\sqrt{6}}, z=\frac{1+\lambda}{\sqrt{6}} \end{aligned}

\begin{aligned} &=2\left(3+\frac{2 \lambda}{\sqrt{6}}\right)-\left(2-\frac{\lambda}{\sqrt{6}}\right)+\left(1+\frac{\lambda}{\sqrt{6}}\right)+1=0 \\\\ &=6+\frac{4 \lambda}{\sqrt{6}}-2+\frac{\lambda}{\sqrt{6}}+2+\frac{\lambda}{\sqrt{6}}=0 \end{aligned}

\begin{aligned} &6+\frac{6}{\sqrt{6}}=0 \\\\ &\Rightarrow \lambda=-\frac{6 \sqrt{6}}{6}=-\sqrt{6} \\\\ &M[3-2,2+1,1-1] \end{aligned}

\begin{aligned} &\therefore M(1,3,0) \\ &\rightarrow \quad Q=\sqrt{2^{2}+1+1}=\sqrt{6} \\ &P(3,2,1) \end{aligned}

                                    

\begin{aligned} &\Rightarrow \frac{(3-a)}{(2 / \sqrt{6})}=\frac{(2-b)}{(-1 / \sqrt{6})}=\frac{(1-c)}{1 / \sqrt{6}}=2 \sqrt{6} \\\\ &\Rightarrow(3-a)=4 \text { or }-4 \\\\ &\Rightarrow-10 r+7 \end{aligned}

\begin{aligned} &\Rightarrow(2-b)=-2 \text { or } 2 \\\\ &\Rightarrow b=-4 \text { or } 0 \\\\ &\Rightarrow(1-c)=2 \text { or }-2 \end{aligned}

\begin{aligned} &\Rightarrow c=-1 \\\\ &p !(-1,4,-1) \text { or } \\\\ &p=7,0,3 \end{aligned}

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads