Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter The Plane exercise 28.15 question 15

Answers (1)

Answer: \left(3, \frac{7}{2}, \frac{11}{2}\right),(4,4,7)

Hint:

Distance \rightarrow \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}

\vec{d}=\vec{r} \cdot \vec{n}

                            

Given:

Find the position vector of the foot of the perpendicular and the perpendicular distance from the point P with position vector 2 \tilde{i}+3 \hat{\jmath}+4 \hat{k}  to the plane  \vec{r} \cdot(\hat{\imath}+\hat{\jmath}+3 \hat{k})-26=0 . Also find the image of P in the plane

Solution:

\begin{aligned} &\frac{x-2}{2}=\frac{y-3}{1}=\frac{z-4}{3}=t \\\\ &x=2+2 t \\\\ &y=3+t \\\\ &z=4+3 t \end{aligned}

\begin{aligned} &\Rightarrow[(2+2 t) \hat{i}+(3+t) \hat{j}+(4+3 t) \hat{k}][2 \hat{i}+\hat{j}+3 \hat{k}]=26 \\\\ &\Rightarrow 19+14 t=26 \\\\ &t=\frac{1}{2} \end{aligned}

Putting the value of t in equation 1
i.e,

\begin{aligned} & x=3, \\\\ &y=\frac{7}{2}, \\\\ &z=\frac{11}{2} \end{aligned}

\mathrm{PQ} \Rightarrow(3-2)^{2}+\left(\frac{7}{2}-3\right)^{2}+\left(\frac{11}{2}-2\right)^{2}

        \begin{aligned} &=\sqrt{1+\left(\frac{1}{2}\right)^{2}+\left(\frac{11}{2}\right)^{2}}, \\\\ &=\sqrt{1+\frac{1}{4}+\frac{9}{4}} \end{aligned}

        \begin{aligned} &=\sqrt{\frac{14}{4}} \\\\ &=\frac{\sqrt{14}}{2} \end{aligned}

Image ,

x=2+2(1)=4

\begin{aligned} &y=3+1=4 \\\\ &z=4+3(1)=7 \end{aligned}

Image (4,4,7) Ans
Foot \left(3, \frac{7}{2}, \frac{11}{2}\right) Ans


 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads