Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter The Plane exercise 28.3  question 15

Answers (1)

Answer:

The answer of given question is 24 \hat{\imath}-6 \hat{\jmath}+8 \hat{k}

Hint:

\vec{r}=(x \hat{\imath}+y \hat{\jmath}+z \hat{k})

Given:

12x-3y+4z=1

Solution:

The vector equation of the plane 12x-3y+4z=1 can be written as

\begin{aligned} &(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot(12 \hat{\imath}-3 \hat{\jmath}+4 \hat{k})=1 \\ &\Rightarrow \vec{r} \cdot(12 \hat{\imath}-3 \hat{\jmath}+4 \hat{k})=1 \end{aligned}

The normal to this plane is

\begin{aligned} &\vec{n}=12 \hat{\imath}-3 \hat{\jmath}+4 \hat{k} \ldots(i) \\ &|\vec{n}|=\sqrt{(12)^{2}+(-3)^{2}+(4)^{2}} \\ &\Rightarrow|\vec{n}|=\sqrt{144+9+16} \\ &\Rightarrow|\vec{n}|=\sqrt{169} \\ &=13 \end{aligned}

The unit vector becomes

\begin{aligned} &\vec{n}=\frac{12 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}}{13} \\ &=\frac{12}{13} \hat{\imath}-\frac{3}{13} \hat{\jmath}+\frac{4}{13} \hat{k} \end{aligned}

Now a vector normal to the plane with the magnitude 26 will be

\begin{aligned} &=26 \vec{n} \\ &\Rightarrow 26\left(\frac{12}{13} \hat{\imath}-\frac{3}{13} \hat{\jmath}+\frac{4}{13} \hat{k}\right) \\ &\Rightarrow 24 \hat{\imath}-6 \hat{\jmath}+8 \hat{k} \end{aligned}

A vector of magnitude 26 units normal to the plane is 24 \hat{\imath}-6 \hat{\jmath}+8 \hat{k}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads