Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter The Plane exercise 28.3  question 19

Answers (1)

Answer:

The answer of given question is x+2y-3z=14

Hint:

By using formula \vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}

Given:

The plane is passing through P(1,2,-3) and perpendicular to OP

Solution:

The required plane is passing through P(1,2,-3)  and perpendicular to OP. let the position vector of this point P be

\Rightarrow \vec{a}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k} \ldots(i)

And it is also given the planes is normal to the line joining the points O(0,0,0) and position vector of point P(1,2,-3).

Then

\vec{n}=\overrightarrow{O P}

? \vec{n} = position vector of\vec{P}  - Position vector of \vec{A}

\begin{aligned} &\vec{n}=(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})-(0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}) \\ &\vec{n}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k} \ldots .(i i) \end{aligned}

We know that

(\vec{r}-\vec{a}) \cdot \vec{n}=0

Substituting the values from equation (i) and equation (ii) in the above equation we get

\begin{aligned} &{[\vec{r}-(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})] \cdot(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})=0} \\ &\Rightarrow \vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})-(\hat{\imath}+2 \hat{\jmath}-3 \hat{k}) \cdot(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})=0 \\ &\Rightarrow \vec{r}-(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})-[(1)(1)+(2)(2)+(-3)(-3)]=0 \end{aligned}

By multiplying the two vectors using the formula

\begin{aligned} &\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \\ &\Rightarrow \vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})-[1+4+9]=0 \\ &\Rightarrow \vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})-14=0 \end{aligned}is the vector equation of the required plane

\operatorname{Let} \vec{r}=(x \hat{\imath}+y \hat{\jmath}+z \hat{k})

Then, the above vector equation of the plane becomes

(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})=14

Now multiplying the two vectors using the formula

\begin{aligned} &\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \\ &\Rightarrow(x)(1)+(y)(2)+(z)(-3)=14 \\ &\Rightarrow x+2 y-3 z=14 \end{aligned}

This is the cartesian form of equation of the required plane.

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads