Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma Class 12 Chapter 10 Differentiation Exercise 10.3 Question 22 Maths Textbook Solution.

Answers (1)

Answer: \frac{dy}{dx}=\frac{-1}{1+x^{2}}

Hint:

\begin{aligned} &\frac{d}{d x}(\text { Constant })=0 \\ &\frac{d}{d x}\left(\mathrm{x}^{n}\right)=n x^{n-1} \end{aligned}

Given:

\sin ^{-1}\left \{ \frac{1}{\sqrt{1+x^{2}}} \right \}

Solution:

Let,

y=\sin ^{-1}\left \{ \frac{1}{\sqrt{1+x^{2}}} \right \}

Let

x=\cot \theta

\theta =\cot ^{-1}x

Now,

y=\sin ^{-1}\left \{ \frac{1}{\sqrt{1+\cot ^{2}\theta }} \right \}

Using,

\begin{aligned} &1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta \\ &y=\sin ^{-1}\left\{\frac{1}{\sqrt{\operatorname{cosec}^{2} \theta}}\right\} \\ &y=\sin ^{-1}\left\{\frac{1}{\operatorname{cosec} \theta}\right\} \end{aligned}                                                                                                    \left \{ \frac{1}{cosec\theta }=\sin \theta \right \}

y=\sin ^{-1}\left ( \sin \theta \right )                                                                                            \sin ^{-1}(\sin \theta)=\sin \theta \text {,if } \theta \varepsilon\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]

y=\theta

y=\cot ^{-1}x

Differentiating with respect to x , We get

\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(\cot ^{-1} x\right) \\ &\therefore \frac{d}{d x}\left(\cot ^{-1} x\right) \Rightarrow \frac{-1}{1+x^{2}} \\ &\frac{d y}{d x}=-\frac{1}{1+x^{2}} \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads