Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma class 12 Chapter 28 The Plane  Exercise 28.10 Question 1 Maths textbook Solution.

Answers (1)

Answer: Distance is \frac{25}{3\sqrt{14}}

Hint: Use Formula P=\frac{a x_{1}+b y_{1}+c_{z_{1}}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}

Given:-2x-y+3z-4=0 and 6x-3y+9z+13=0

Solution:Let P\left ( x_{1},y_{1},z_{1} \right ) be any point on 2x-y+3z-4=0 Then

            2x_{1}-y_{1}+3z_{1}=4                                                .......(1)

Let, P = Distance between \left ( x_{1},y_{1},z_{1} \right ) and the plane 6x-3y+9z+13=0.

We know the distance of point\left ( x_{1},y_{1},z_{1} \right ) from the plane ax+by+cz+d=0 is given by

\begin{aligned} &\mathrm{P}=\left|\frac{a x_{1}+b y_{1}+c_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right| \\ \end{aligned}

Putting the values

\begin{aligned} &\mathrm{P}=\left|\frac{6 x_{1}+(-3) y_{1}+9 z_{1}+13}{\sqrt{6^{2}+(-3)^{2}+9^{2}}}\right| \\ \end{aligned}

\begin{aligned} &\mathrm{P}=\left|\frac{3\left(2 x_{1}-y_{1}+3 z_{1}\right)+13}{\sqrt{36+9+81}}\right| \\ \end{aligned}

\begin{aligned} &\mathrm{P}=\left|\frac{3(4)+13}{3 \sqrt{14}}\right| \\ \end{aligned}                                                                                        (From equation (1))

\begin{aligned} &\mathrm{P}=\frac{25}{3 \sqrt{14}} \end{aligned}

Therefore, the distance between the parallel planes2x-y+3z-4=0 and 6x-3y+3z+13=0 is \frac{25}{3\sqrt{14}} units.

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads