Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 10 Differentiation Exercise 10.7 Question 23 Maths Textbook Solution.

Answers (1)

Answer:

            \frac{d y}{d x}\; \: \mathrm{At}\; \; \left(\theta=\frac{\pi}{3}\right)=-\sqrt{3}

Hint:

            Use chain rule and   \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}

Given:

            \begin{aligned} &x=a(\theta-\sin \theta) \\ &y=a(1+\cos \theta) \end{aligned}

Solution:

x=a(\theta-\sin \theta) \\                                                                      

\frac{d x}{d \theta}=a\left[\frac{d \theta}{d \theta}-\frac{d \sin \theta}{d \theta}\right] \\                                                            \left[\frac{d \sin \theta}{d \theta}=\cos \theta\right]

\frac{d x}{d \theta}=a(1-\cos \theta) \\                                                        (1)                                              

\begin{aligned} & &y=a(1+\cos \theta) \end{aligned}                                                                      

\frac{d y}{d \theta}=a\left(\frac{d 1}{d \theta}+\frac{d \cos \theta}{d \theta}\right) \\

=a(0+(-\sin \theta)) \\                                                                                     \left[\because \frac{d \cos \theta}{d \theta}=-\sin \theta\right]

\begin{aligned} & &\frac{d y}{d \theta}=-a \sin \theta \end{aligned}                                                                                                               (2)

\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}

Put the values of  \frac{d y}{d \theta} \text { and } \frac{d x}{d \theta}  from the equation (2) and (1) respectively

\frac{d y}{d x}=\frac{-a \sin \theta}{a(1-\cos \theta)} \\

\frac{d y}{d x}=\frac{-\sin \theta}{1-\cos \theta} \\

\begin{aligned} &\text { At } \theta=\frac{\pi}{3} \end{aligned}

\frac{d y}{d x}=-\left(\frac{\sin \frac{\pi}{3}}{1-\cos \frac{\pi}{3}}\right)

=-\left(\frac{\frac{\sqrt{3}}{2}}{1-\frac{1}{2}}\right)                                                                       \left[\begin{array}{rl} \because \sin \frac{\pi}{3} & =\frac{\sqrt{3}}{2} \\\\ \cos \frac{\pi}{3} & =\frac{1}{2} \end{array}\right]                                                                       

=-\left(\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}\right) \\                                                   

\begin{aligned} & &\frac{d y}{d x} a t \theta=\frac{\pi}{3}=-\sqrt{3} \end{aligned}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads