Get Answers to all your Questions

header-bg qa

Please solve rd sharma class 12 chapter 12 derivatives as a rate measure exercise fill in the blanks question 1 maths textbook solution

Answers (1)

Answer: \frac{-12}{5}

Hint: Here, we use the basic concept of \frac{dy}{dx} and \frac{dz}{dx}

Given\sqrt{x^{2}+16} with respect to \left [ \frac{x}{x-1} \right ] at x=3

Solution: Let y=\sqrt{x^{2}+16}

                     z=\sqrt{\frac{x}{\left ( x-1 \right )}}

                  \frac{dy}{dx}=x\left ( x^{2}+16 \right )^{\frac{-1}{2}}

                  \frac{dz}{dx}=\left [ \frac{\left \{ \left ( x-1 \right ) -x\right \}}{\left \{ \left ( x-1 \right )^{2} \right \}} \right ]

             \therefore \frac{dy}{dx}=x\left ( x^{2}+16 \right )^{\frac{-1}{2}}  and \left ( \frac{dz}{dx} \right )=\frac{-1}{\left ( x-1 \right )^{2}}

Hence,

                \frac{dy}{dx}=\left [ \frac{\left ( \frac{dy}{dx} \right )}{\left ( \frac{dz}{dx} \right )} \right ]

           \therefore \frac{dy}{dx}=\frac{\left [ x\left ( x^{2}+16 \right ) \right ]^{\frac{-1}{2}}}{-1/(x-1)^{2}}

          \frac{dy}{dz}_{x=3}=\left [ 3\times \frac{1}{5} /\frac{-1}{4}\right ]=\left ( \frac{3}{-5} \right )\times 4

                      =\frac{-12}{5}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads