Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 21 Differential Equation exercise 21.5 question 2 maths textbook solution.

Answers (1)

Answer:  \frac{x^6}{6}+\frac{x^3}{3}+-2 \log \left | x \right |+C=y

Hint: You have to integrate by applying integration of xn.

Given: \frac{dy}{dx}=x^5+x^2-\frac{2}{x},x\neq 0

Solution:\frac{dy}{dx}=x^5+x^2-\frac{2}{x}

dy=\left (x^5+x^2-\frac{2}{x} \right )dx

Integrating both sides,

\begin{aligned} &\int d y=\int\left(x^{5}+x^{2}-\frac{2}{x}\right) d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; &\left[\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \& \int \frac{1}{x} d x=\log |x|+C\right]\\ &y=\frac{x^{6}}{6}+\frac{x^{3}}{3}-2 \log |x|+C \end{aligned}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads