Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 22 Algebra of Vectors Exercise 22.7 Question 11 Maths Textbook Solution.

Answers (1)

Answer:

2:3

Hint:
When, in a three collinear points A, B and C, if B divides AC then formula is  \frac{n \vec{a}+m \vec{b}}{n+m}

Given:

A(1,-2,-8), B(5,0,-2) \& C(11,3,7)  Are collinear points

Solution:

\begin{aligned} &A=\hat{i}-2 \hat{j}-8 \hat{k} \\ &B=5 \hat{i}-2 \hat{k} \\ &C=11 \hat{i}+3 \hat{j}+7 \hat{k} \\ &\overrightarrow{A B}=(5 \hat{i}-2 \hat{k})-(\hat{i}-2 \hat{j}-8 \hat{k}) \\ &=(5-1) \hat{i}+(0+2) \hat{j}+(-2+8) \hat{k} \end{aligned}

=4 \hat{i}+2 \hat{j}+6 \hat{k} \\                                            … (i)

\overrightarrow{B C}=(11 \hat{i}+3 \hat{j}+7 \hat{k})-(5 \hat{i}-2 \hat{k}) \\

=(11-5) \hat{i}+(3-0) \hat{j}+(7+2) \hat{k} \\

\begin{aligned} & &=6 \hat{i}+3 \hat{j}+9 \hat{k} \end{aligned}                                         … (ii)

Rewriting (i) and (ii)

\overrightarrow{A B}=2(2 \hat{i}+\hat{j}+3 \hat{k}) \\                          … (iii)

\begin{aligned} & &\overrightarrow{B C}=3(2 \hat{i}+\hat{j}+3 \hat{k}) \end{aligned}                         … (iv)

From (iii)

\overrightarrow{B C}=\frac{3}{2} \overline{A B}

Thus, \overrightarrow{B C} \& \overrightarrow{A B}  are parallel to each other

Therefore they are collinear

Now,

 

Now, if B is dividing AC internally into m and n then,

\begin{aligned} &B=\left(\frac{11 m+n}{m+n}\right) \hat{i}+\left(\frac{3 m-2 n}{m+n}\right) \hat{j}+\left(\frac{7 m-8 n}{m+n}\right) \hat{k} \\\\ &5 \hat{i}-2 \hat{k}=\left(\frac{11 m+n}{m+n}\right) \hat{i}+\left(\frac{3 m-2 n}{m+n}\right) \hat{j}+\left(\frac{7 m-8 n}{m+n}\right) \hat{k} \end{aligned}

Comparing,

\begin{aligned} &5=\frac{11 m+n}{m+n} \\ &5 m+5 n=11 m+n \\ &\therefore 6 m-4 n=0 \end{aligned}                         … (v)

\begin{gathered} 0=\frac{3 m-2 n}{m+n} \\ 0=3 m-2 n \\ 3 m-2 n=0 \end{gathered}                            … (vi)

\begin{aligned} &-2=\frac{7 m-8 n}{m+n} \\ &-2 m-2 n=7 m-8 n \\ &9 m-6 n=0 \end{aligned}                            … (vii)

Now, solving equation (v) and (VI) by elimination method

\begin{aligned} &6 m-4 n=0 \\ &2(3 m-2 n)=0 \\ &3 m-2 n=0 \\ &3 m=2 n \end{aligned}

If we suppose n=1 then

3 m=2(1) \\

\begin{aligned} & &m=\frac{2}{3} \end{aligned}  For all the three equation

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads