Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 23 Scaler and Dot Product exercise Multiple choice question 21 maths textbook solution

Answers (1)

Answer:

Option (c) R-[-4, 7]

Hint:

You must know the formula for finding angle between two vectors  \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}

Given:

x \hat{i}+3 \hat{j}-7 \hat{k} \text { and } \hat{x} \hat{i}-x \hat{j}+4 \hat{k}, angle between them is acute.

Solution:

\begin{aligned} &\frac{(\hat{x} \hat{i}+3 \hat{j}-7 \hat{k})(\hat{x}-x \hat{j}+4 \hat{k})}{\sqrt{\left(x^{2}+9+49\right)\left(2 x^{2}+16\right)}}=\cos \theta \\\\ &\frac{x^{2}-3 x-28}{\sqrt{\left(x^{2}+58\right)\left(2 x^{2}+16\right)}}=\cos \theta \end{aligned}                \left[\because \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\cos \theta\right]

Angle between the vectors is acute

\begin{aligned} &\theta<\frac{\pi}{2} \Rightarrow \cos \theta>0 \\\\ &\frac{x^{2}-3 x-28}{\sqrt{\left(x^{2}+56\right)\left(2 x^{2}+16\right)}}>0 \end{aligned}

\begin{aligned} &x^{2}-3 x-28>0 \\ &x^{2}-7 x+4 x-28>0 \\ &x(x-7)+4(x-7)>0 \\ &(x-7)(x+4)>0 \\ &x \in R-[-4,7] \end{aligned}

Hence, option (c) is correct

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads