Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 28 The Plane Exercise 28.11 Question 10 Maths Textbook Solution.

Answers (1)

Answer: The line of section is parallel to plane

Hint: Use properties of plane

Given:

\begin{aligned} &5 x+2 y-4 z+2=0,2 x+8 y+2 z-1=0 \\\\ &\& 4 x-2 y-5 z-2=0 \end{aligned}

Solution: Let  a_{1}, b_{1} \& c_{1}  be the direction ratios of line   5 x+2 y-4 z+2=0,2 x+8 y+2 z-1=0

As we know, that if two planes are perpendicular with direction ratios as a_{1}, b_{1} \& c_{1}  and   a_{2}, b_{2} \& c_{2}   then  a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0

Since line lies in both the planes, so it is perpendicular to both planes

            \begin{aligned} &5 a_{1}+2 b_{1}-4 c_{1}=0 \\ & \end{aligned}                              …………….. (1)

            2 a_{1}+8 b_{1}+2 c_{1}=0                              …………….. (2)

Solving equation (1) and (2) by cross multiplication

We have,

            \begin{aligned} &\frac{a_{1}}{2 \times 2-(-4) \times 8}=\frac{b_{1}}{2 \times(-4)-5 \times 2}=\frac{c_{1}}{5 \times 8-2 \times 2} \\ & \end{aligned}

           \Rightarrow \frac{a_{1}}{4+32}=\frac{b_{1}}{-8-10}=\frac{c_{1}}{40-4}

           \begin{aligned} &\Rightarrow \frac{a_{1}}{36}=\frac{b_{1}}{-18}=\frac{c_{1}}{36}=k \\ & \end{aligned}

           \Rightarrow \frac{a_{1}}{2}=\frac{b_{1}}{-1}=\frac{c_{1}}{2}=k \\

           a=2 k, b=-k, c=2 k

We know that line

           \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}   is parallel to plane  a_{2} x+b_{2} y+c_{2} z+d_{2}=0

if   a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0            ………….. (3)

Here, line with direction ratios   is parallel to plane

            \begin{aligned} &4 x-2 y-5 z-2=0 \\ & \end{aligned}

            \Rightarrow 2 \times 4+(-1) \times(-2)+2 \times(-5)=0 \\

            \Rightarrow 8+2-10=0

Therefore, the line of section is parallel to the plane.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads