Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 28 The Plane Exercise 28.11 Question 11 Maths Textbook Solution.

Answers (1)

Answer:

            \overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})+\mathrm{k}((2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}))

Hint: Use properties of plane

Given: Point (1,-1,2)  and plane  2 x-y+3 z-5=0

Solution: Equation of line passing through \vec{a}  and  \vec{b}  is given by  \vec{r}=\vec{a}+k \vec{b}              ……………. (1)

Given that the line passes through  (1,-1,2) \text { is } \vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+k \vec{b}                …………….. (2)

Since, line (1) is perpendicular to the plane  2 x-y+3 z-5=0

So, normal to plane is parallel to the line.

In vector form,

            \overrightarrow{\mathrm{b}}=\mathrm{m}(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})  as, is any scalar.

Thus, the equation of required line,

            \overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})+\mathrm{k}((2 \hat{\mathbf{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}))

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads