Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 28 The Plane exercise very short answer type question 17 maths textbook solution

Answers (1)

Answer:

 45°

Hint:

 cos(90-\theta )=\frac{\left | \overrightarrow{n}.\overrightarrow{b} \right |}{\left | \overrightarrow{n} \right |.\left | \overrightarrow{b} \right |}

Given:

 \frac{x-1}{2}=\frac{y-2}{1}=\frac{z+3}{-2} \text { and } x+y+4=0

Solution:

x+y+4=0 \qquad \qquad \qquad \dots(i)

So the vector normal to the plane (i) is

\overrightarrow{n}=\overrightarrow{i}+\overrightarrow{j}

Cartesian equation of plane is

\frac{x-1}{2}=\frac{y-2}{1}=\frac{z+3}{-2} \qquad \qquad \qquad \dots(ii)

\overrightarrow{b}=2\overrightarrow{i}+\overrightarrow{j}-2\overrightarrow{k}

Since

cos(90-\theta )=\frac{\left | \overrightarrow{n}.\overrightarrow{b} \right |}{\left | \overrightarrow{n} \right |.\left | \overrightarrow{b} \right |}

\begin{aligned} &cos(90-\theta )=\frac{2+1}{\sqrt{1+1}.\sqrt{4+1+4}}\\ &cos(90-\theta )=\frac{3}{\sqrt{2}.3}\\ &cos(90-\theta )=\frac{1}{\sqrt{2}}\\ &\Rightarrow sin\theta =\frac{1}{\sqrt{2}}\\ &\Rightarrow \theta =45^{\circ} \end{aligned}

 

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads