Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Differentials Errors and Approximations exercise 13.1 question 1 maths textbook solution

Answers (1)

Answer: \Delta y=0-No change

 

Given: y=sinx  and  x changes from  \frac{\pi }{2}  to  \frac{22}{14}

Solution: Suppose  \chi=\frac{\pi}{2}   Therefore x+\Delta x=\frac{22}{14}

\begin{aligned} &\rightarrow \frac{\pi}{2}+\Delta x=\frac{22}{14} \\\\ &\Delta x=\frac{22}{14}-\frac{\pi}{2} \end{aligned}

 

→ Differentiate y with respect to x

 

\frac{d y}{d x}=\cos x

⇒  As we know that (\sin x)=\cos x

\therefore \frac{d y}{d x}=\cos x

⇒ when,x=\frac{\pi}{2}   we have   \frac{d y}{d x}=\cos \left(\frac{\pi}{2}\right)

\begin{aligned} &\Rightarrow\left(\frac{d y}{d x}\right) x=\frac{\pi}{2}=0 \\\\ &\Rightarrow \Delta y=\left(\frac{d y}{d x}\right) \Delta x \end{aligned}

 

Here     \frac{d y}{d x}=0     and   \Delta x=\frac{22}{14}-\frac{\pi}{2}

 

\Delta y=(0)\left(\frac{22}{14}\right)-\left(\frac{\pi}{2}\right)

 

\Delta y=(0)\

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads