Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Differentiation exercise 10.2 question 13 maths textbook solution

Answers (1)

Answer: (2 x+2) 3^{x^{2}+2 x} \log _{e} 3

Hint: You must know the rules of solving derivative of polynomial function

Given: 3^{x^{2}+2 x}

Solution:

Let  y=3^{x^{2}+2 x}

Differentiating with respect to x

\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(3^{x^{2}+2 x}\right) \\ &\frac{d y}{d x}=3^{x^{2}+2 x} \times \log _{e} 3 \frac{d}{d x}\left(x^{2}+2 x\right) \end{aligned}                \frac{d}{d x} a^{x}=a^{x} \log a    [using chain rule]

\frac{d y}{d x}=(2 x+2) 3^{x^{2}+2 x} \log _{e} 3

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads