Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Differentiation exercise 10.2 question 40 maths textbook solution

Answers (1)

Answer: 2 x \cos 2 x+\sin 2 x+5^{x} \log _{e} 5+6 \tan ^{5} x \sec ^{2} x

Hint: You must know about the rules of solving derivative of trigonometric function.

Given:  x \sin 2 x+5^{x}+k^{k}+\left(\tan ^{6} x\right)

Solution:

Let  y=x \sin 2 x+5^{x}+k^{k}+\left(\tan ^{6} x\right)

Differentiate with respect to x,

\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\mathrm{x} \sin 2 \mathrm{x}+5^{\mathrm{x}}+\mathrm{k}^{\mathrm{k}}+\left(\tan ^{6} \mathrm{x}\right)\right]

\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{xsin} 2 \mathrm{x})+\frac{\mathrm{d}}{\mathrm{dx}}\left(5^{\mathrm{x}}\right)+\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{k}^{\mathrm{k}}\right)+\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{6} \mathrm{x}\right)

\frac{\mathrm{dy}}{\mathrm{dx}}=\left[\mathrm{x}\left\{\cos 2 \mathrm{x} \frac{\mathrm{d}}{\mathrm{dx}}(2 \mathrm{x})\right\}+\sin 2 \mathrm{x}\right]+5^{\mathrm{x}} \log _{\mathrm{e}} 5+6 \tan ^{5} \mathrm{x}+\frac{\mathrm{d}}{\mathrm{dx}}(\tan \mathrm{x})

\frac{d y}{d x}=\left[x\left\{\cos 2 x \frac{d}{d x}(2 x)\right\}+\sin 2 x\right]+5^{x} \log _{e} 5+6 \tan ^{5} x \sec ^{2} x

\frac{d y}{d x}=2 x \cos 2 x+\sin 2 x+5^{x} \log _{e} 5+6 \tan ^{5} x \sec ^{2} x

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads