Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Differentiation exercise 10.5 question 18 sub question (viii) maths textbook solution

 

Answers (1)

Answer:  \left(\frac{x^{2}-3}{x}+2 x \log x\right) x^{x^{2}-3}+\left(\frac{x^{2}}{x-3}+2 x \log (x-3)\right)(x-3)^{x^{2}}

Hint: Diff by x^{n-3}

Given: y=x^{x^{2}-3}+(x-3)^{x^{2}}

Solution:  y=u+v

u=x^{x^{2}-3}

\begin{aligned} &\log u=\log x^{x^{2}-3} \\\\ &\log u=\left(x^{2}-3\right) \log x \end{aligned}

\frac{1}{u} \frac{d u}{d x}=\left(x^{2}-3\right) \cdot \frac{1}{x}+\log x(2 x)

\frac{d u}{d x}=\left(\frac{x^{2}-3}{x}+2 x \log x\right) \cdot x^{x^{2}-3}

Now v=(x-3)^{x^{2}}

Take log on both sides

        \begin{aligned} &\log v=\log (x-3)^{x^{2}} \\\\ &\frac{1}{v} \frac{d v}{d x}=x^{2} \log (x-3) \end{aligned}

        \frac{d v}{d x}=\left[\frac{x^{2}}{x-3}+2 x \log (x-3)\right](x-3)^{x^{2}}

        \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}

        \left(\frac{x^{2}-3}{x}+2 x \log x\right) x^{x^{2}-3}+\left(\frac{x^{2}}{x-3}+2 x \log (x-3)\right)(x-3)^{x^{2}}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads