Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 Chapter maxima and minima exercise 17.5 question 31 maths textbook solution.

Answers (1)

(4,2)

Hint: For maximum or minimum value of z must have \frac{dz}{dy}=0

Given: Let the point (x,y) on the curves x^2=8y nearest to (2,4)

x^2=8y

y = \frac{x^2}{8}                   ....... (1)

Also,

d^2=(x-2)^2+(y-4)^2  using distance formula

Solution: 

Now,

z=d^2=(x-2)^2+(y-4)^2

z=(x-2)^2+\left ( \frac{x^2}{8}-4 \right )                 ..... from (1)\

\begin{aligned} &=x^{2}+4-4 x+\frac{x^{4}}{64}+16-x^{2} \\ &\frac{d z}{d y}=-4+\frac{4 x^{3}}{64} \\ &\frac{d z}{d y}=0 \\ &\frac{4 x^{3}}{64}=-4 \\ &x^{3}=64, x=4 \end{aligned}

Substituting the value of y in eqn (1)

y =2

\frac{d^2z}{dy^2}=\frac{12x^2}{64}=3>0

The required nearest point is (4,2)

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads