Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter The Plane exercise 28.15 question 5 maths textbook solution

Answers (1)

Answer:   \left(-\frac{1}{12}, \frac{25}{12},-\frac{1}{6}\right), \frac{13}{\sqrt{24}}

Hint:

Let point          

                                            

directional ratio are perpendicular to the line

Given:

Find the coordinate of the foot of the perpendicular from the point (1,1,2) to the plane 2x-2y+4z+5=0 . Also find the length of the perpendicular

Solution:

Direction ratio of plane \vec{n}=2,-2,4

 

equation of line \frac{x-1}{2}=\frac{y-1}{-2}=\frac{z-2}{4}=\lambda(\text { say })

\begin{aligned} &x=2 \lambda+1 \\\\ &y=-2 \lambda+1, \\\\ &z=4 \lambda+2 \end{aligned}

Put in 2 x-2 y+4 z+5=0

2(2 \lambda+1)-2(-2 \lambda+1)+4(4 \lambda+2)+5=0

\begin{aligned} &4 \lambda+2+4 \lambda-2+16 \lambda+8+5=0 \\\\ &24 \lambda+13=0 \\\\ &\lambda=\frac{-13}{24} \end{aligned}

Putting the value of λ iner

\begin{aligned} &x=2 \lambda+1 \\\\ &y=-2 \lambda+1 \\\\ &z=4 \lambda+2 \end{aligned}

\begin{aligned} &x=2\left(-\frac{13}{24}\right)+1 \\\\ &y=-2\left(\frac{-13}{24}\right)+1 \\\\ &z=4\left(\frac{-13}{24}\right)+2 \end{aligned}

\begin{aligned} &x=\frac{-13+12}{12} \\\\ &y=\frac{13+12}{12} \\\\ &z=\frac{-13+12}{6} \end{aligned}

Distance   =\left(-\frac{1}{12}, \frac{25}{12},-\frac{1}{6}\right)
Given point (1,1,2)

Distance   =\sqrt{\left(1+\frac{1}{12}\right)^{2}+\left(1-\frac{25}{12}\right)^{2}+\left(2+\frac{1}{6}\right)^{2}}

                \begin{aligned} &=\sqrt{\frac{169}{144}+\frac{169}{144}+\frac{169}{36}} \\\\ &=13 \sqrt{\frac{1}{144}+\frac{1}{144}+\frac{1}{36}} \end{aligned}

                \begin{aligned} &=\frac{13}{12} \sqrt{1+1+4} \\\\ &=\frac{13 \sqrt{6}}{12} \end{aligned}

                                                    

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads