Get Answers to all your Questions

header-bg qa

Provide Solution For  R.D.Sharma Maths Class 12 Chapter 30 Probaility  Exercise 30.4 Question 12 Maths Textbook Solution.

Answers (1)

Answer: \frac{2}{15}

Hint: Use, P\left ( \bar{A}\cap \bar{B} \right )=P\left ( \bar{A} \right )P\left ( \bar{B} \right )

Given: A can solve the problem = \frac{2}{3}

            B can solve the problem= \frac{3}{5}

Solution:

As we know, Two events are said to be independent if the product of the events are equal to their intersection. i.e. P\left ( A\cap B \right )=P\left ( A \right )P\left ( B \right )

              A can solve the problem = \frac{2}{3}           

              i.e., P\left ( A \right )=\frac{2}{3}

            B can solve the problem= \frac{2}{3}

             i.e.,  P\left ( B \right )=\frac{3}{5}

              \begin{aligned} &\mathrm{P}(\mathrm{A})+\mathrm{P}(\overline{\mathrm{A}})=1 \\ &\mathrm{P}(\overline{\mathrm{A}})=1-\frac{2}{3} \\ &=\frac{1}{3} \end{aligned}

Similarly,P\left ( \bar{B} \right )=1-P\left ( B \right )

                             =1-\frac{3}{5}

                               =\frac{2}{5}

P\left ( \bar{A}\cap \bar{B} \right )=P\left ( \bar{A} \right )P\left ( \bar{B} \right )

                       =\frac{1}{3}\times \frac{2}{5}

                        =\frac{2}{15}        

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads