Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 17 Maxima and Minima Exercise Case Study Based Questions question 8 subquestion (iv)

Answers (1)

Answer:  800 \mathrm{~m}^{2}

Hint: use the concept of maxima and minima.

Solution:

As we know,

\begin{aligned} &\frac{\mathrm{dA}}{\mathrm{dx}}=0 \\ \end{aligned}

\frac{\mathrm{dA}}{\mathrm{dx}}=\frac{8\left(200+\mathrm{x}^{2}\right)}{\sqrt{400-\mathrm{x}^{2}}} \\

\frac{\mathrm{d} \mathrm{A}}{\mathrm{dx}}=0 \\

\mathrm{f}\left(200+\mathrm{x}^{2}\right)=0 \\

1600+8 \mathrm{x}^{2}=0

\begin{aligned} &8 x^{2}=-1600 \\ \end{aligned}

 

x^{2}=-1600 \\

 

x=\pm 400 \\

x=400 \text { for } x \\

\text { for, } 2 x=2 \times 400=800 \mathrm{~m}^{2}

Thus is the maximum area of the garden

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads