Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 28 The Plane Exercise 28.11 Question 16

Answers (1)

Answer:  \frac{1}{\sqrt{6}}  units

Hint: \mathrm{D}=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{n}}-\mathrm{d}}{\overrightarrow{\mathrm{n}}}

Given:  \vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=1 \text { and } \vec{r}=(-\hat{i}+\hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})

Solution: We know that line \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\mathrm{kb}  and plane \vec{r} \cdot \vec{n}=\mathrm{d}  is parallel if  \vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=1

Given, equation of line \vec{r}=(-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{k})+k(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+4 \hat{k}) and equation of plane is  \vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=1

So, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+4 \hat{\mathrm{k}} \text { and } \overrightarrow{\mathrm{n}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}

Now,

So, the line and plane are parallel

we know that the Distance ‘D’ of a plane  \vec{r} \cdot \vec{n}=d  from a point \vec{a} is given by

            \mathrm{D}=\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{n}}-\mathrm{d}}{\overrightarrow{\mathrm{n}}}, \overrightarrow{\mathrm{a}}=(-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})\mathrm{D}=\frac{1}{\sqrt{6}} \text { units }

            \begin{aligned} \Rightarrow D &=\frac{(-\hat{i}+\hat{j}+\hat{k})(\hat{i}+2 \hat{j}-\hat{k})-1}{\sqrt{(-1)^{2}+2^{2}+1^{2}}} \\ & \end{aligned}

            =\frac{-1+2-1-1}{\sqrt{1+4+1}}=\frac{-1}{\sqrt{6}}

We take the mod value,

            So,  \mathrm{D}=\frac{1}{\sqrt{6}} \text { units }

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads