Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 23 Scaler and Dot Product exercise Multiple choice question 22

Answers (1)

Answer:

Option (d) \frac{2 \pi}{3}<\theta<\pi

Hint:

You must know the formula of magnitude of vector =\sqrt{a^{2}+b^{2}+c^{2}}

Given:

\vec{a} \text { and } \vec{b} are unit vectors inclined at an angle \theta such that |\vec{a}+\vec{b}|<1

Solution:

\begin{aligned} &|\vec{a}+\vec{b}|<1 \\\\ &|\vec{a}+\vec{b}|^{2}<1 \end{aligned}

\begin{aligned} &|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}| \cdot|\vec{b}| \cos \theta<1 \\\\ &1+1+2 \cos \theta<1 \\\\ &2(1+\cos \theta)<1 \end{aligned}

\begin{aligned} &2\left(2 \cos ^{2} \frac{\theta}{2}\right)<1 \\\\ &\cos ^{2} \frac{\theta}{2}<\frac{1}{4} \end{aligned}                    \begin{aligned} &{[\because|\vec{a}|=|\vec{b}|=1]} \\\\ &{\left[\because \cos \theta=2 \cos ^{2} \frac{\theta}{2}-1\right]} \end{aligned}

\left|\cos \frac{\theta}{2}\right|<\frac{1}{2}

We know \theta is always lies between \left [ -\pi ,\pi \right ]

\frac{2 \pi}{3}<\theta<\pi

Hence, option (d) is correct

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads