Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 28 The Plane exercise multiple choice question 10

Answers (1)

Answer:

 Option (a)

Hint:

 Put  \lambda = 1

Given:

 \overrightarrow{r}=(-2\widehat{i}+3\widehat{j}+4\widehat{k})+\lambda (3\widehat{i}-2\widehat{j}-\widehat{k})

Solution:

The plane contains the line

\overrightarrow{r}=(-2\widehat{i}+3\widehat{j}+4\widehat{k})+\lambda (3\widehat{i}-2\widehat{j}-\widehat{k})

so, the plane contains the point

(\widehat{i}+2\widehat{j}+3\widehat{k})

 Put  \lambda = 1

-2\widehat{i}+3\widehat{j}+4\widehat{k}+3\widehat{i}-2\widehat{j}-\widehat{k} \text { i.e } (\widehat{i}-5\widehat{j}+3\widehat{k})

so, we got the plane, they are:

(\widehat{i}+2\widehat{j}+3\widehat{k}); (-2\widehat{i}-3\widehat{j}+4\widehat{k}); \text { and } (\widehat{i}-5\widehat{j}+3\widehat{k})

Let,

\begin{aligned} &\overrightarrow{a}=(\widehat{i}-5\widehat{j}+3\widehat{k})-(\widehat{i}+2\widehat{j}+3\widehat{k}) \text { and }\\ &\overrightarrow{b}=(\widehat{i}-5\widehat{j}+3\widehat{k})-(-2\widehat{i}-3\widehat{j}+4\widehat{k})\\ &\text { So, }\overrightarrow{a}=-7\widehat{j}\text { and }\overrightarrow{b}=3\widehat{i}-2\widehat{j}-\widehat{k} \end{aligned}

The normal of two vectors \begin{aligned} &\overrightarrow{a} \end{aligned} and \begin{aligned} &\overrightarrow{b} \end{aligned}

\begin{aligned} &\overrightarrow{a}=\begin{vmatrix} \widehat{i} &\widehat{j} &\widehat{k} \\ 0 &-7 &0 \\ 3 &-2 &1 \end{vmatrix}\\ &=\left [ \left \{ (-7)\times (-1)-((-2)\times 0) \right \}\widehat{i}+\left \{ (0\times (-1))-(0\times (-2)) \right \}\widehat{j}+\left \{ (0\times (-2))-((-7)\times 3) \right \}\widehat{k} \right ]\\ &=7\widehat{i}+21\widehat{k} \end{aligned}

The general equation of plane is,

\begin{aligned} &\left [ (x-1)\widehat{i}+(y-2)\widehat{j}+(z-3)\widehat{k} \right ].(7\widehat{i}+21\widehat{k})=0\\ &7(x-1)+21(z-3)=0\\ &7x-7+21z-63=0\\ &7x+21z=70\\ &x+3z=10\\ &\text { or }\\ &\overrightarrow{r}.(\widehat{i}+3\widehat{k})=10, \qquad \left [ \overrightarrow{r}=x\widehat{i}+y\widehat{j}+z\widehat{k} \right ] \end{aligned}

Hence, the vector equation of the plane containing the line

\overrightarrow{r}=(-2\widehat{i}+3\widehat{j}+4\widehat{k})+\lambda (3\widehat{i}-2\widehat{j}-\widehat{k})

and of the point

(\widehat{i}+2\widehat{j}+3\widehat{k})

is

\begin{aligned}&\overrightarrow{r}.(\widehat{i}+3\widehat{k})=10 \end{aligned}

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads