Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma Maths Class 12 Chapter 30 Probability Exercise 30.3 question 10.

Answers (1)

Answer: \frac{1}{6},\frac{1}{36}

Hint: \text{Probability}=\frac{\text{No. of outcomes}}{\text{Total no.of Outcomes }}

Given,

            A=Getting 4 on trial throw

            B=Getting 6 on first throw and 5 on second throw

Solution:

Clearly,
\begin{gathered} \mathrm{A}=\left\{\begin{array}{l} (1,1,4),(1,2,4),(1,3,4),(1,4,4),(1,5,4), \\ (1,6,4),(2,1,4),(2,2,4),(2,3,4),(2,4,4), \\ (2,5,4),(2,6,4),(3,1,4),(3,2,4),(3,3,4), \\ (3,4,4),(3,5,4),(3,6,4),(4,1,4),(4,2,4), \\ (4,3,4),(4,4,4),(4,5,4),(4,6,4),(5,1,4), \\ (5,2,4),(5,3,4),(5,4,4),(5,5,4),(5,6,4), \\ (6,1,4),(6,2,4),(6,3,4),(6,4,4),(6,5,4), \\ (6,6,4) \end{array}\right\} \\ \mathrm{B}=\{(6,5,1),(6,5,2),(6,5,3),(6,5,4),(6,5,5),(6,5,6)\} \end{gathered}            

 

Now, 

\mathrm{A} \cap \mathrm{B}=\{(6,5,4)\}

P(A) = 36
P(B) = 6
\begin{aligned} &P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1}{6} \\ &P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{1}{36} \end{aligned}           

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads