Get Answers to all your Questions

header-bg qa

provide solution for RD Sharma maths class 12 chapter Differentiation exercise  10.2 question 10

Answers (1)

Answer: 3 x^{2} \times 2^{x^{3}} \times \log _{e} 2

Hint: You must know the rules of solving derivative of polynomial function.

Given: 2^{x^{8}}

Solution:

Let  y=2^{x^{3}}

Differentiating with respect to x         

\begin{aligned} &\frac{d y}{d x}=\frac{d}{d x}\left(2^{x^{3}}\right) \\ &\frac{d y}{d x}=2^{x^{3}} \times \log _{e} 2 \frac{d}{d x}\left(x^{3}\right) \end{aligned}                        \frac{d}{d x} a^{x}=a^{x} \log a        [using chain rule]

\frac{d y}{d x}=3 x^{2} \times 2^{x^{3}} \times \log _{e} 2

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads