Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter The Plane exercise 28.3  question 10

Answers (1)

Answer:

The answer of given question is \frac{2}{3}, \frac{1}{3},-\frac{2}{3}

Hint:

Dividing by 3 on both sides.

Given:

The given equation of the plane is 2x+y-2z=3

Solution:

Dividing by 3 on both sides, we get

\begin{aligned} &\frac{2 x}{3}+\frac{y}{3}-\frac{2 z}{3}=\frac{3}{3} \\ &\Rightarrow \frac{\frac{x}{3}}{2}+\frac{y}{3}-\frac{\frac{z}{3}}{2}=1 \ldots (i) \end{aligned}

We know that if a,b,c are the intercepts by the plane on thee co-ordinates axes, then equation of the plane is

\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1

Comparing the equation (i) and (ii) we get

a=\frac{3}{2}, \quad b=3, \quad c=-\frac{3}{2}

Again the given equation of the plane is 2x+y-2z=3 writing this in vector form, we get

\begin{aligned} &\Rightarrow(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot(2 \hat{\imath}+\hat{\jmath}-2 \hat{k})=3 \\ &\Rightarrow \vec{r} \cdot(2 \hat{\imath}+\hat{\jmath}-2 \hat{k})=3 \end{aligned}

So vector normal to the plane is given by

\begin{aligned} &\vec{n}=2 \hat{\imath}+\hat{\jmath}-2 k \\ &\Rightarrow|\vec{n}|=\sqrt{(2)^{2}+(1)^{2}+(-2)^{2}} \\ &\Rightarrow|\vec{n}|=\sqrt{4+1+4} \\ &\Rightarrow|\vec{n}|=3 \end{aligned}

Direction vector of  \vec{n}=2,1,-2

Direction vector of  \vec{n}

\begin{aligned} &=\frac{2}{|\vec{n}|}, \frac{1}{|\vec{n}|}, \frac{-2}{|\vec{n}|} \\ &\Rightarrow \vec{n}=\frac{2}{3}, \frac{1}{3},-\frac{2}{3} \end{aligned}

So,

Intercepts by the plane on the co-ordinate axes are =\frac{2}{3}, \frac{1}{3},-\frac{2}{3}

Direction cosines of normal to the plane are =\frac{2}{3}, \frac{1}{3},-\frac{2}{3}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads