Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class12 Chapter Maxima and Minima exercise 17.5 question 36.

Answers (1)

10 items

Hint: For maximum or minimum value of P, we must have \frac{dP}{dx}=0

Given: Profit = S.P - C.P

P= x\left ( 50-\frac{x}{2} \right )-\left ( \frac{x^2}{4}+35x+25 \right )

Solution: P= x\left ( 50-\frac{x}{2} \right )-\left ( \frac{x^2}{4}+35x+25 \right )

\begin{aligned} &P=50 x-\frac{x^{2}}{2}-\frac{x^{2}}{4}-35 x-25 \\ &\frac{d P}{d x}=50-x-\frac{x}{2}-35 \\ &\frac{d P}{d x}=0 \\ &15-\frac{3 x}{2}=0 \\ &15=\frac{3 x}{2}, x=\frac{30}{3}=10 \end{aligned}

Now,

\frac{d^2P}{dx^2}==\frac{-3}{2}<0

Profit is the maximum if daily output is 10 units.

 

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads