Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class12 Chapter Maxima and Minima exercise 17.5 question 43.

Answers (1)

S =9

Hint: For maximum or minimum value of S, we must have \frac{dS}{dD}=0

Given:

The equation of line passing through (1,4) with slope m is given by 

y-4=m(x-1)                     ........(1)

Solution:

Sub (y=0) value in eqn (1)

0-4=m(x-1)

\frac{-4}{m}=x-1

x=\frac{m-4}{m}

Sub (x=0) value in eqn (1)

y-4=m (0-1)

y=-m+4

x=-(m-4)

So the intercepts coordinates axes are \frac{m-4}{m},-(m-4)

\begin{aligned} &S=\frac{m-4}{m}-(m-4) \\ &\frac{d S}{d m}=\frac{4}{m^{2}}-1 \\ &\frac{d S}{d m}=0 \\ &\frac{4}{m^{2}}-1=0 \\ &\frac{4}{m^{2}}=1 \\ &m^{2}=4, m=\pm 2 \end{aligned}

\begin{aligned} &\frac{d^{2} S}{d m^{2}}=\frac{-8}{m^{3}} \\ &\left(\frac{d^{2} S}{d m^{2}}\right)_{m=2}=\frac{-8}{2^{3}}=-1<0 \end{aligned}

Sum is minimum at m = 2

\left(\frac{d^{2} S}{d m^{2}}\right)_{m=-2}=\frac{-8}{(-2)^{3}}=1>0

So the sum is maximum at m = -2

Thus,

\mathrm{S}=\left[\frac{-2-4}{-2}-(-2-4)\right]=3+6=9

 

 

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads