Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class12 Chapter Maxima and Minima exercise Multiple choice question, question 13.

Answers (1)

Answer: option(d) 0

Hint: For local maxima or minima, we must have f'(x)=0.

Given: f(x)=x^3-18x^2+96x

Solution:

We have,

f(x)=x^3-18x^2+96x

\Rightarrow f'(x)=3x^2-36x+96                                   

For maxima and minima f'(x)=0

\Rightarrow 3x^2-36x+96=0

\Rightarrow x^2-12x+32=0

\Rightarrow (x-4)(x-8)=0

\Rightarrow x=4,8

At x = 4, f(4)=(4)^3-18(4)^2+96(4)=64-288+384=160

At x = 8, f(4)=(8)^3-18(8)^2+96(8)=512-1152+768=128

Now at the extreme points of [0, 9]

f(0)=(0)^3-18(0)^2+96(0)=0

f(9)=(9)^3-18(9)^2+96(9)=729-1458=864=135

Hence, 0 is the minimum value in the range [0, 9].

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads