Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class12 Chapter Maxima and Minima exercise Multiple choice question, question 8.

Answers (1)

Answer: option(a) \frac{a+b+c}{3}    

Hint: For local maxima or minima, we must have f'(x) =0.

Given: f(x)=(x-a)^2+(x-b)^2+(x-c)^2

Solution:

We have,

f(x)=(x-a)^2+(x-b)^2+(x-c)^2

f'(x)=2(x-a)+2(x-b)+2(x-c)
For maxima and minima f'(x)=0

\Rightarrow 2(x-a)+2(x-b)+2(x-c)=0

\Rightarrow 2x-2a+2x-2b+2x-2c=0

\Rightarrow 6x-2a-2b-2c=0

\Rightarrow 6x=2(a+b+c)

\Rightarrow x=\frac{(a+b+c)}{3}

Now,

f''(x)=2+2+2=6>0

So,x=\frac{a+b+c}{3}  is a point of local minima.

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads