Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class12 Chapter Maxima and Minima exercise Multiple choice question, question 9.

Answers (1)

Answer: option (b) \frac{1}{2}

Hint: For local maxima or minima, we must have f'(x) =0.

Given: f(x)=\frac{1}{x}+\frac{1}{y}

Solution:

Let the two non-zero numbers be x and y.

x + y =8

y = 8 -x                                                                                                         ...(i)

We have,

f(x)=\frac{1}{x}+\frac{1}{y}

f(x)=\frac{1}{x}+\frac{1}{(8-x)}                                                  …(ii)                   From Equation (i)                 

On differentiating w.r.t x

f'(x)=\frac{-1}{x^2}+\frac{1}{(8-x)^2}
for maxima and minimaf'(x)=0

\Rightarrow \frac{-1}{x^2}+\frac{1}{(8-x)^2}=0

\Rightarrow \frac{-(8-x)^2+x^2}{x^2(8-x)^2}=0

\Rightarrow -64-x^2+16x+x^2=0

\Rightarrow 16x=64

\Rightarrow x=4

Now, again differentiating (ii) w.r.t  x

\begin{aligned} &f^{\prime \prime}(x)=\frac{2}{x^{3}}-\frac{2}{(8-x)^{3}} \\ &f^{\prime \prime}(4)=\frac{2}{4^{3}}-\frac{2}{(8-4)^{3}} \\ &f^{\prime \prime}(4)=\frac{2}{64}-\frac{2}{64}=0 \end{aligned}

Minimum Value =\frac{1}{4}+\frac{1}{4}=\frac{2}{4}=\frac{1}{2}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads